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An embedded-boundary, Cartesian-mesh flow solver is coupled with a three degree-of-
freedom structural model to perform static, aeroelastic analysis of complex aircraft geome-
tries. The approach solves a nonlinear, aerostructural system of equations using a loosely-
coupled strategy. An open-source, 3-D discrete-geometry engine is utilized to deform a trian-
gulated surface geometry according to the shape predicted by the structural model under the 
computed aerodynamic loads. The deformation scheme is capable of modeling large deflec-
tions and is applicable to the design of  modern, very-flexible transport wings. The coupling 
interface is modular so that aerodynamic or structural analysis methods can be easily 
swapped or enhanced. After verifying the structural model with comparisons to Euler beam 
theory, two applications of the analysis method are presented as validation. The first is a 
relatively stiff, transport wing model which was a subject of a recent workshop on aeroelas-
ticity. The second is a very flexible model recently tested in a low speed wind tunnel. Both 
cases show that the aeroelastic analysis method produces results in excellent agreement with 
experimental data.

I. Introduction
In contrast to the relatively rigid aluminum wings of the past seven decades, modern composite wings are sig-

nificantly more flexible. For instance, even at cruise,  the wing on the Boeing 787 Dreamliner will nominally deflect 
ten feet (10% of the semispan) as depicted in Figure 1. The weight savings realized by composite construction com-
bined with active load alleviation and other modern flight controls point toward a future of ever more flexible trans-
port aircraft. Both the D8 “Double Bubble”1 (Figure 2) and truss-braced-winged “SUGAR”2 (Figure 3) concept air-
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Figure 1. Boeing 787 at cruise (courtesy of Boeing). Figure 2. The D8 “Double-Bubble” concept.
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craft are designed around highly-flexible, high aspect-
ratio, composite wings. Beyond these designs, future 
concepts will actively exploit wing flexibility through in-
flight morphing to significantly improve performance 
allowing for even lighter construction. For example, the 
Variable Camber Continuous Trailing Edge Flap3 
(VCCTEF) concept depicted in Figure 4 will be able to 
dynamically tailor the spanwise lift distribution to im-
prove aerodynamic performance throughout an aircraft’s 
mission profile. Such concepts make accurate static and 
dynamic aeroelastic predictions more critical than ever. 
Traditional methods that assume small deflections and 
linear aerodynamics are no longer valid for these air-
craft, and thus more advanced tools must be deployed 
early in the design cycle.

In the past few decades, aeroelastic analysis has 
been performed using a variety of approaches. Tradition-
ally, linear aerodynamics methods (such as the Doublet 
Lattice Method4) have been closely coupled with finite 
element structural solvers (such as NASTRAN5) to cre-
ate aerostructual analysis methods. Similarly,  Drela6 
combined linear lifting-line and nonlinear beam theories 
to create a fully-coupled analysis scheme that is solved 
by a global Newton method. While these schemes are 
often valuable for designing structurally stiff aircraft, 
linear aerodynamics is not sufficiently accurate for de-
signing highly flexible aircraft. To employ higher-
fidelity analysis methods,  especially those with disparate 
solution schemes, a monolithic approach to solving the 
aerostructural problem is not always ideal. In 1992, Gu-
ruswamy7 argued that monolithic static-aeroelastic solv-
ers of the time were very computationally inefficient. 
Also, the ability to use variable-fidelity analysis methods 
without the need to completely rewrite an existing analy-
sis tool to include cross-discipline terms is a very attrac-
tive feature. Hence, a more loosely-coupled approach to 
solving the aeroelastic equations is often preferred.

Many loosely-coupled aeroelastic solvers have been 
developed in the past. In the late 1970’s, Chipman et. al.8 
developed an iterative scheme that combined a transonic 
small disturbance solver with a slender beam structural 
model. Whitlow and Bennett9 loosely coupled a full po-
tential flow solver with a finite element structural model 
that was appropriate for both high and low aspect-ratio 
wings. However, the method was only applicable to small deflections. Tatum and Giles10 built a similar and very 
modular tool for analyzing complete fighter aircraft with a full potential flow solver and an equivalent plate model 
instead of a finite element method. Guruswamy7 successfully coupled Euler and Navier-Stokes solvers with finite 
element methods based purely on simple beam elements. Martins11 solved a high-fidelity aerostructural model using 
a loosely-coupled approach with a geometry engine as the primary interface. That method also allowed for adjoint-
based design optimization.

This paper presents the first steps in the development of an inexpensive, static-aeroelastic analysis capability 
that leverages the versatility of an inviscid Cartesian-mesh solver and a mid-fidelity structural analysis model that 
idealizes the wing structure as a series of tapered beams. While similar to previously analysis methods,9-11 the pre-
sented loosely-coupled analysis procedure is also designed to handle discrete geometry whether it is a legacy surface 
mesh or derived from modern computer-aided design software.  One major advantage of utilizing a Cartesian-mesh 
flow solver is that volume mesh perturbation schemes used by many tools in the past7,9-11 are not necessary. No mat-
ter how much a wing deforms, a quality volume mesh is generated on-the-fly.  High-fidelity Cartesian Euler solvers 
are also computationally efficient enough to be used even at the conceptual level of design. In the future,  this capa-
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Figure 4. Representation of an aircraft using the Variable 
Camber Continuous Trailing Edge Flap concept.

Figure 3. The SUGAR truss-braced wing concept.
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bility will be exploited in a multidisciplinary, design optimization framework. Hence, the analysis is designed to 
properly represent the tradeoffs between aerodynamic performance and structural weight.

II. Problem Statement
The coupled set of static aeroelastic equations consist of aerodynamic flow equations and solid mechanics equa-

tions for linearly elastic structures.  In this work, the aerodynamic flow is computed by solving the discretized Euler 
equations

 R(M, Q) = 0 (1)

where Q = [!, !u, !v,  !w, !E]T denotes the continuous flow variables (! is density, u, v,  w  are Cartesian components 
of velocity, and E is total energy),  M describes the computational mesh, and R represents a residual. The structural 
model used in this work is a finite element method that solves the linear elasticity equations

 Kx = F (2)

where K is the structural stiffness matrix, x describes the elastic deformation of the structure, and F is the applied 
load distribution. The aeroelastic coupling of equations (1) and (2) is given by

 M = M(x) (3)

 F = F(Q) (4)

Equation (3) states that the mesh is a function of the deformed shape as computed by equation (2). Equation (4) 
states that the loading on the structure is really a function of the aerodynamic loading as determined by the solution 
computed by equation (1). In other words, the aerodynamic loading determines the deformed shape of the structures 
and hence the outer mold line of the analyzed object (such as a wing), but the aerodynamic loading is determined by 
the shape of the outer mold line. Hence the two disciplines are tightly coupled and must be solved as such.

III. Solution Methodology
 For the work in this paper, the aerostructural problem is solved using a loosely-coupled scheme (similar to that 

in reference [9-10]) as described below. Figure 5 portrays a top-level overview of the procedure.  The baseline ge-
ometry is provided as a watertight triangulation of the complete vehicle to be analyzed. This triangulation feeds each 
part of the aeroelastic analysis in some manner and is the geometry for the first aeroelastic iteration.  A step-by-step 
description of the process is presented below:

1. An analysis is performed with the current wing geometry to compute the aerodynamic loads.
2. Aerodynamic loads are post-processed and conservatively transferred to the structural analysis.
3. The structural model computes the wing deformation due to the aerodynamic loads.
4. The geometry modeler deforms the outer mold line of the wing according to the predicted shape.
5. Steps 1 through 4 are repeated in order until the deformed shape converges.

Details on each component of the analysis method are provided in the sections that follow. The aerodynamic 
and structural analyses will we discussed first since they are stand-alone applications in themselves. The loads trans-
fer method will then be discussed since it is strongly dependent on the aerodynamic and structural analyses. Next, 
the deformer is discussed and finally, some details about the interface between all of these components are pre-
sented.

A.  Wing Structural Analysis

Within the aeroelastic analysis framework of Figure 5,  the structural analysis is used to compute the deformed 
wing shape based on the applied aerodynamic loads. The framework currently employs the structural analysis 
method originally developed by Gallman12 which will henceforth be referred to as the BEAM code. This structural 
analysis was chosen for two reasons. First, it was originally developed to model a joined-wing structure meaning it 
is also applicable to a truss-braced wing such as that shown in Figure 3. This type of aircraft is currently of great 
interest in the NASA Fundamental Aeronautics Program. The other reason is that the model is appropriate for a de-
sign optimization environment. The structural model is detailed enough that it can be optimized to provide ample 
structural stiffness at minimum weight and is directly tied to the outer-mold-line of the wing,  which of course de-
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termines aerodynamic performance. This means the 
model represents the proper tradeoffs between aerody-
namic and structural efficiencies which would be valu-
able within a design optimization framework.

The BEAM code is a mid-fidelity, finite element 
method that models the wing structure as a tapered, 
closed box consisting of stringers and shear webs such 
as that shown in Figure 6. The stringers have a 
piecewise-linear cross-sectional area along the span and 
carry all of the bending loads. Figure 6 shows a model 
with six stringers but the middle stringers are optional. 
The shear webs are of piecewise-constant thickness 
along the span and carry all of the shear and torsional 
loads about the elastic axis of the model.  Both the 
stringer cross-sectional area and the shear web thickness 
are user-specified and can vary in the spanwise direc-
tion.  The structure is assumed to be comprised of just 
one material (such as aluminum). Moments of inertia are 
computed based on the user-provided geometry of the 
beam model (stringer and web cross-sectional area) from 
which the elastic axis can be identified.

The structural model is discretized using a number of spanwise panels modeled as separate beam elements. 
Each of the elements are in turn empirically modeled as tapered beams. When loads (forces and moments) are ap-
plied locally to each element in the model, the BEAM code predicts bending displacements along with twist (tor-
sional displacement) about the elastic axis by solving equation (2). For a typical wing, while lift-aligned bending 
(flapping) accounts for most of the wing displacement, streamwise bending can be important if significant since it 
effectively modifies the wing sweep. Torsional displacement directly modifies the wing’s local incidence angle and 
therefore affects the spanwise load distribution. Compression or elongation along the beam axis is neglected and 
sectional yaw and roll rotations are assumed negligible. Since the structures model computes one torsional and two 
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Figure 6. Wing structural model showing 6 constant area 
stringers (paneled between spheres) and 6   constant 
thickness shear webs.

Aerodynamic 
Analysis Load Transfer Structural 

Analysis Deform Geometry

Deformed GeometryConverged?

Stop

Yes

No

Baseline Geometry

Aeroelastic
Iteration

Deformer

Figure 5. Aeroelastic analysis procedure. Blue connections indicate data that is  computed and transferred only once 
(preprocessing step), while black connections are repeated until convergence of the wing shape.
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bending displacements, it is formally a three degree-of-
freedom beam model. Like any finite-element model, 
accuracy is improved as the number of panels increases. 
Reference [12] suggests that 20 to 30 panels are enough 
resolution for a transport wing structure, and our experi-
ence with the code concurs.

As a verification exercise, the BEAM code was 
used to predict the deflections on a long beam of con-
stant cross-section as shown in Figure 7. The beam is 20 
units long, with a cross-section that is 2 units by 1 unit. 
Since the beam section is constant,  Euler-Bernoulli 
slender-beam theory applies,  and therefore analytical 
solutions can be computed and compared with the 
BEAM predictions. The results of a simple set of verification cases are shown in Figure 8. For all of these cases,  the 
beam is assumed to be clamped at the root,  which is also the standard boundary condition for the wing box at the 
root in an aeroelastic solution. Figure 8(a) shows the deflected beam shape when a point load is applied at the tip. 
Similarly,  Figure 8(b) shows the twist distribution along the beam when a concentrated torque is applied at the tip. 
Figure 8(c) shows the predicted beam shape when a constant,  distributed load is applied on the entire beam. Like-
wise, Figure 8(d) shows the predicted twist distribution when a constant, distributed torque is applied over the length 
of the beam. All of the comparisons show the BEAM prediction to be within 0.1% of the analytic solution, verifying 
that the BEAM code does indeed predict linear elasticity on slender beams correctly. Note that reference [12] also 
performed relevant verification of this model through direct comparison with NASTRAN5 results.

5
American Institute of Aeronautics and Astronautics

Distance Along Beam

N
or

m
al

 D
ef

le
ct

io
n

0 5 10 15 20-6

-5

-4

-3

-2

-1

0

1

Euler Theory
BEAM Prediction

Distance Along Beam

Tw
is

t D
ef

le
ct

io
n

0 5 10 15 20-0.1

0

0.1

0.2

0.3

0.4

Euler Theory
BEAM Prediction

Distance Along Beam

N
or

m
al

 D
ef

le
ct

io
n

0 5 10 15 20-5

-4

-3

-2

-1

0

1

Euler Theory
BEAM Prediction

Distance Along Beam

Tw
is

t D
ef

le
ct

io
n

0 5 10 15 20-0.05

0

0.05

0.1

0.15

0.2

Euler Theory
BEAM Prediction

Figure 8. Verification of BEAM predictions with analytic solutions: (a) concentrated tip loading, (b) concentrated torque 
at the tip, (c) distributed load (over length of beam), and (d) distributed torque. Units are non-dimensional.

(a) (b)

(c) (d)

Figure 7." BEAM model with constant stringer (orange) 
and shear web (blue) sections used in verification cases.
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B. Aerodynamic Analysis

Aerodynamic analysis for all results in this paper is 
performed using the Cart3D13 simulation package which 
includes an adjoint-driven mesh refinement capability. 
The package uses a Cartesian cut-cell approach14 in 
which the Euler equations (equation (1)) are discretized 
on a multilevel Cartesian mesh with embedded bounda-
ries. The mesh consists of regular Cartesian hexahedra 
everywhere, except for a layer of body-intersecting 
boundary cells. The spatial discretization uses a second-
order accurate finite volume method with a weak impo-
sition of boundary conditions.  The flux-vector splitting 
approach of van Leer15 is used.  Steady-state flow solu-
tions are obtained using a five-stage Runge–Kutta 
scheme with local time stepping and multigrid. Domain 
decomposition via space-filling curves permits parallel 
computation; for more details see Aftosmis et al.  and 
Berger et al.16-18

Although it consists of nested Cartesian cells, the 
mesh is viewed as an unstructured collection of control 
volumes making the approach well-suited for solution-
adaptive mesh refinement. Mesh refinement is based on a duality-preserving discrete adjoint solver developed by 
Nemec et al.19 While originally developed for gradient-based shape optimization,20 the method is also employed for 
error estimation and adaptive mesh refinement.21 The adjoint-based error-estimation tailors the mesh refinement to 
reduce discretization error in a user-selected output of interest such as lift or drag. Error in a functional can be either 
driven below some pre-specified value,  or alternatively, reduced as much as possible using a “worst-errors-first 
strategy” until attaining a desired mesh size. Typical simulations cost 3-5 times that of a single flow solve on the 
final mesh. An example refined mesh and solution is depicted in Figure 9 for a case where mesh refinement was 
driven by both lift and drag. Another valuable Cart3D feature is the ability to specify a value of lift coefficient by 
iterating on the freestream angle of attack during the simulation.

Referring back to Figure 5, once a flow solution is computed, the surface pressure distribution is used to com-
pute the distributed loads and moments on the wing surface. These loads and moments are then transferred to the 
structures model to compute deflections and therefore the deformed shape. More details on the transfer process are 
provided in the next section.

C. Loads Computation and Transfer

The structural model idealizes the wing structure as a tapered wing box, which in turn is modeled as a cantilever 
beam with a user-specified number of spanwise elements. This greatly simplifies the load-transfer process described 
in equation (4) as only the distribution of loads along the elastic axis is required. To obtain this distribution, the sur-
face triangulation is partitioned into regions that correspond to the elements of the structural model. Once identified, 
the triangles in these partitions are then explicitly bound to the structural elements. This binding of the wing skin to 
the structural elements persists throughout the iterative process of the aeroelastic analysis portrayed in Figure 5. This 
is important since for cases with deflections greater than a few percent span, the same partitioning of the wing sur-
face must be used throughout the iterative process for consistency.

The binding of the triangulation to the structural model is accomplished through the set of continuous strips 
whose boundaries are defined by the extended edges of the structural model elements. The strip boundaries are per-
pendicular to the elastic axis of the wing with two exceptions. Near the wing root, everything inboard of the out-
board edge of the root structural panel is included in that element’s binding. Similarly, at the wing tip, all of the sur-
face outboard of the inboard edge of the tip panel is used to compute the load for that element. In other words, each 
triangle on the wing surface is bound to its nearest structural model panel. For a triangle whose area straddles more 
than one structural element, the centroid of that triangle is used to determine to which structural element it is bound. 
While this convention usually creates a “saw-tooth” edge between strips of triangles, any error introduced by this 
rougher boundary always vanishes as the surface triangulation is refined. Figure 10 gives an example where the dif-
ferent colors indicate the partitioned bindings to a 10 element structural model.

The specific loads computed on each triangulation strip include the force component normal to and the moment 
about the elastic axis of the structural model. Referring back to Figure 5,  these strip loads are applied to the corre-
sponding beam element in the structural model. Recall that even as the wing deforms, the surface-triangle binding 
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Figure 9. Example of an adaptively-refined Cart3D mesh 
about a transport aircraft. The mesh refinement was 
driven by the accompanying adjoint solver. The surface 
coloring corresponds to local pressure.
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persists throughout the iterative computation. This 
means the binding only needs to be performed once as a 
pre-processing step.

Another feature of the load-transfer process is that 
the aerodynamic loads on the structural elements are 
always computed in the local axis system that is aligned 
with the current elastic axis shape. Figure 11 illustrates 
this notion. The force component computed and then 
applied to each structural element (based on the explic-
itly bound region of the triangulation) is always taken 
normal to the current deformed shape of the wing. These 
are the loads that are applied to the undeformed struc-
tural model to determine the latest shape of the de-
formed wing. This is a first step to modeling nonlinear-
ity in the aeroelastic solution of very flexible wings. If 
the structural model could directly compute additional, 
higher-order deformations due to forces on an already 
deformed wing, the method would be fully nonlinear 
(assuming linear elasticity, of course).

D. Deformation Scheme

The most important requirement of any deformer to be used in the aeroelastic analysis procedure is that it 
should mimic how a wing under load deforms in reality. This requirement is particularly necessary for cases with 
sizable deformations where the small angle approximations used in some traditional methods are no longer valid. 
The wing on the Boeing 787 (recall Figure 1) exhibits a sizable deformation of 10% semispan, for instance, and so a 
computational deformation scheme must properly capture the shape of this loaded wing. This section describes the 
deformer requirements in more detail and then discusses the choice and implementation of the deformation scheme 
used in the aeroelastic analysis procedure.

The ribs of a typical aircraft wing structure can be assumed to be mostly rigid since their sole purpose, after all, 
is to maintain the shape of the wing section. On a typical transport wing, these ribs are usually aligned to be perpen-
dicular to the elastic axis of the entire structure. Hence, a deformer for the aeroelastic analysis should try to maintain 
the section shape normal to the elastic axis as it deflects the wing. There are several other geometric constraints nec-
essary for a realistic deformation. Since spanwise extension or compression is assumed to be negligible, the de-
former should maintain the wing span even as the spanwise shape is modified. This means that when the wing tip 
deflects normal to the spanwise direction, it also deflects inboard to keep the arc-length of the elastic axis constant. 
Analogous to maintaining the shape of the wing sections, the wing thickness normal to the elastic axis should also 
remain constant as the wing is deformed. Therefore, when the wing spanwise shape is modified,  the wing sections 
normal to the elastic axis should roll and yaw appropriately.

The deformer used in this work is Blender,22 which is an open-source, discrete geometry engine that was origi-
nally designed for computer graphics modeling and animation. Many of the deformation tools that are used in 3-D 
animation are also used in some form in modern shape optimization methods for aerospace designs. Blender also has 
an incredibly practical graphical-user-interface allowing the user to easily generate, modify,  and deform discrete 
representations of nearly any geometric object. Since batch-mode manipulation and rendering is essential to 3-D 
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Figure 11. Force vectors computed along the span of a deformed wing (vectors shown on only a few panels for clarity). 
Note the vectors are normal to the local elastic axis of the wing structure.

Figure 10. Example binding of surface triangles to each 
structural element as indicated by different colors on the 
wing.
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animation, the package also provides a powerful Python-
based23 application-programming-interface (API) allow-
ing users to develop their own extensions and scripts. 
The surface deformer for the aeroelastic analysis proce-
dure is built using Blender and this API.

Blender’s lattice modifier performs the actual de-
formation of the triangulation.  The lattice was chosen 
because it can satisfy all of the geometric constraints 
discussed above. Examples of lattice modifiers are 
shown in Figures 12 and 13. The lattice is initially a 
three-dimensional, strictly Cartesian mesh in space 
which is bound to a discrete geometry. As the vertices 
(or points) of the lattice are moved, the bound discrete 
geometry is morphed through 3-D spline functions de-
fined between lattice points in the three Cartesian direc-
tions aligned with the lattice. More details and examples 
of applying lattices to morph discrete geometry are pre-
sented by Anderson.24

As shown in Figures 12 and 13, the lattices have 
only two vertices in dimensions that are not spanwise 
and hence are really a stack of simple rectangles.  These 
lattices are also aligned so that the normals of the rec-
tangles are parallel to the wing elastic axis.  This means 
that displacements computed by the structural model are 
also the displacements of the lattice rectangles.  To main-
tain the wing section shape normal to the elastic axis, 
the lattice can be simply a spanwise array of rigid rec-
tangles. Thus, the bound sectional shape parallel to the 
rectangles is always preserved even as the wing span-
wise shape is modified. Conversely, in the direction 
along the elastic axis,  a cubic Hermite spline function 
(more specifically a Catmull-Rom spline) is used to 
smoothly deform the wing surface between the many 
lattice sections. Note that this spline was not originally 
in the Blender distribution but has since been added to 
the application by the first author.*

The translational and rotational displacements that are computed by the structures code are also discrete in that 
values are predicted for the centroids of the beam elements and the very ends of the wing box. These locations are 
not always convenient since the Blender lattice consists of equally spaced points. Therefore,  to generate a continu-
ous function of the displacements,  the discrete values are splined with a traditional cubic spline that enforces con-
tinuous curvature. Figure 14 shows an example of computed discrete displacement values (the dots) along with their 
corresponding splines (red curves). The specific values that are splined are two components of beam deflection nor-
mal to and the torque-driven rotation about the wing elastic axis. While these are the only displacements that are 
computed by the structural model, displacements and rotations in the other directions can also be computed to pre-
serve geometric integrity.  For instance, as the wing tip is deflected vertically, the wing tip moves inboard to preserve 
the actual wing span. Simply shearing the wing shape vertically would actually lengthen the wing span in terms of 
arc-length and unrealistically increase the wing area. Similarly, as the wing bends, the local section roll angle (or 
dihedral) must remain perpendicular to the deformed elastic axis or the effective wing thickness is altered due to 
unrealistic shearing of the geometry. This is demonstrated in the example in Figure 12; notice that the lattice sections 
remain perpendicular to the wing elastic axis even though it is bent. Likewise, as the wing is deflected in the 
streamwise direction, the lattice sections yaw to remain orthogonal to the elastic axis.

While Figures 12 and 13 show lattices with roughly 20 spanwise vertices, typically lattices are built with 64 
spanwise rectangles which is the maximum lattice dimension allowed in Blender.  This dimension is chosen to mini-
mize interpolation error by the lattice splines.  As discussed above, all six components of translation and rotation can 
be computed at any point along the span using the continuous displacement splines computed with the structural 
analysis results and geometric integrity constraints. Therefore, to apply the deformation with the lattice,  the local 
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* Included in standard distribution since Blender 2.68.

Figure 13. Example deformation of a wing with a Blender 
lattice modifier. Note the lattice is  aligned with the elastic 
axis of the wing consistent with the structural model.

Figure 12. Example deformation of a wing with a Blender 
lattice modifier. Note the spanwise sections of the lattice 
are rolled to preserve orthogonality to the deflected 
elastic axis and hence also preserve the local thickness.
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displacements are computed for each spanwise lattice section according to the displacement splines and constraints. 
From there,  Blender produces a smoothly morphed surface triangulation that matches the deformed shape predicted 
by the structures model. This deformed geometry is used to build the computational mesh for the next aerodynamic 
analysis addressing equation (3),  thereby completing the iterative cycle in the Figure 5 framework. The aeroelastic 
cycle converges when the difference between the de-
formed geometries from consecutive iterations vanishes.

One other detail must be addressed for this defor-
mation scheme. For a swept wing, the lattice often exists 
well into and even beyond the fuselage,  as is the case in 
Figure 13. While only the wing part of the triangulation 
is bound to the lattice, an additional module was built 
for Blender that would smoothly fade the deflected wing 
geometry into the baseline geometry thereby preserving 
the intersection of the wing and fuselage.  This is accom-
plished by “blending” the baseline and deflected wings 
with the weighting functions shown in Figure 15. Note 
the functions are designed to always sum to unity. The 
spanwise extent over which this blending is applied was 
selected by aesthetics and the desire to minimize the 
influence of the blending. Blending that occurs too 
quickly can create very highly kinked geometry near the 
wing intersection, while blending too slowly reduces the 
actual influence of the structural model solution.

To apply the blending,  each vertex on both the base-

9
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DLR Dec 6, 2013

Wing-Fuselage Junction Preservation

• Lattice induced deflection 
extends into fuselage, 
corrupting wing junction

• Junction preserved by blending 
original into deflected wing 
with weighting functions

11
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Figure 15. Weighting function used for blending baseline 
and deflected wings to maintain valid geometry near the 
root. Note the abscissa is the fractional spanwise distance 
from the wing intersection with the fuselage.

Figure 14. Example of splined displacements  computed by structures model. Note that for these plots, the Z-axis is aligned 
with the elastic axis of the wing, and the X-axis is chordwise. Note this image is an actual screen capture of optional 
output from the aeroelastic analysis interface, giving the user valuable feedback during the analysis. All plots  are shown 
in the units of length consistent with the sample case.

discrete solution
splined function
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line and deflected wings is weighted by these functions 
based on the baseline vertex location in the spanwise 
direction (normal to the freestream direction in this case) 
and then summed to create a new wing. This blended 
wing follows the predicted deflection for most of its 
span, but remains constrained near the root section. This 
process not only maintains valid geometry, but it also 
better represents reality where the wing is clamped at the 
root. While in actuality the fuselage also deforms a small 
amount, this effect is not currently modeled. Clamping 
the wing everywhere at the root provides a realistic 
model while preserving valid geometry at the wing-
fuselage junction. The trailing edges of a baseline, de-
flected, and blended wing near the root of an example 
wing-fuselage configuration are shown in Figure 16. The 
blended wing by itself is shown in Figure 17 for clarity.

E. Interface

All of the components shown in Figure 5 and dis-
cussed in the sections above are modular, stand-alone 
applications. To control the transfer of data between 
components and the overall execution of the method, an 
interface consisting of Python modules and scripts was 
developed. The choice of scripting language was rational 
since the Blender API is also in Python. The interface 
provides the user with the ability to execute the entire 
scheme as shown in Figure 5 or just individual modules 
for unit testing. The modules that require the use of the 
Blender application can be executed in a manner where 
the results are presented within the Blender graphical-
user-interface. All of these features enhance and acceler-
ate a problem setup and debugging process.  Other mod-
ules that do not require Blender generate data files 
which can be viewed by many visualization packages. The interface also keeps track of convergence of the “aeroe-
lastic iteration” (defined in Figure 5) by outputting the wing tip deflection computed during each cycle. Using Py-
thon scripts and modules also allows the user to modify and therefore customize the process if necessary. This in-
cludes the ability to substitute, enhance, and even include other modules or disciplines in the analysis.

IV. Applications
The aeroelastic analysis tool was applied to two configurations as a demonstration and to provide preliminary 

validation of the method. The first configuration is the HIgh REynolds Number AeroStructural Dynamics model 
(HIRENASD)25 which was tested in the European Transonic Wind Tunnel (ETW). This configuration was also 
adopted as a test case in the first Aeroelastic Prediction Workshop (AePW).26 It is one of the few available tests that 
provided static aeroelastic data, though the model was quite stiff. The second configuration analyzed was a Generic 
Transport Model (GTM)27 which was tested recently in the University of Washington Aeronautical Laboratory 
(UWAL) wind tunnel. This wind tunnel model was built to be twice as flexible as a Boeing 757 and is therefore an 
excellent validation case.

A. High Reynolds Number Aerostructural Dynamics Model (HIRENASD)

The first AePW was held in 2012 just before the AIAA 53rd Structures, Structural Dynamics and Materials 
Conference in Honolulu, HI. While most of the analysis tasks requested for the workshop involved forced, unsteady 
motion, one task also involved validation against static-aeroelastic experimental data. The HIRENASD wing, as 
shown in Figure 18,  was tested in the ETW at transonic conditions and relatively high Reynolds numbers in 2006. 
Although the model was structurally quite stiff,  the wing still exhibited notable wing-tip deflection at transonic con-
ditions which induced noticeable changes in lift. The availability of validated simulation results from the workshop 
along with some published experimental data made this a good validation case for the aeroelastic analysis tool.

10
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Figure 17. The blended wing from Figure 16.

Figure 16. Example of baseline (blue), deflected (gold), and 
blended (gray) wings portraying the effects  of the 
weighting function in Figure  15. The view is upstream 
looking at the trailing edge with the fuselage on the left.
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For the AePW participants, a NASTRAN5 model of 
the wind tunnel test article was provided, which was 
used to create a BEAM model that exhibited the same 
flexibility in the flapping direction (normal to the wing 
chord). Because the wing tip deflection in the wind tun-
nel is only about 1% semispan and the model was 
known to be very stiff in torsion, deflections due to tor-
sional and streamwise loading are assumed to be negli-
gible. Hence, the streamwise bending and torsional stiff-
nesses are assumed to be very high and to not contribute 
to the aeroelastic solution.

To create the BEAM model, several loading condi-
tions were applied to the NASTRAN model to measure 
deflections. Using this deflection data, a BEAM model 
was built so that when loaded, the predicted deflected 
shape matched that from the NASTRAN model. Several 
test cases were run to compare the predictions from the 
BEAM and NASTRAN models (see Figure 19). These 
plots compare predictions from the NASTRAN and 
BEAM models for various loading conditions.  The 
agreement is quite good for all the test cases indicating 
that the BEAM model accurately captures the flapping 
stiffness distribution of the NASTRAN model. 

Using this BEAM model, the Cart3D-based aeroe-
lastic solver was used to analyze the HIRENASD ge-
ometry at two conditions,  namely those for ETW test 
runs 155 and 159 corresponding to freestream Mach 
numbers of 0.7 and 0.8. Both experiments report data for 
an angle of attack of 1.5°. Unfortunately,  appropriately-
vetted forces and deflection data were not made available for these tests and therefore direct comparisons with ex-
perimental data were not possible. However, most participants of the AePW analyzed these conditions with Navier-
Stokes-based aeroelastic analysis methods. NASA Langley provided deformed wing solutions (described in refer-
ence [28]) that were generated using FUN3D.29 These high-fidelity solutions are thus used for code-to-code com-
parisons of the Cart3D-based tool for these test cases.

Because viscous effects are significant for this wing at these conditions,  the FUN3D-computed lift (and there-
fore overall wing loading) was matched instead of angle of attack. This resulted in a slightly lower angle of attack in 
the Cart3D solutions.  The angles of attack and computed lift of the Cart3D- and FUN3D-based aeroelastic analyses 
for the two cases are shown in Tables I and II. As expected, the Mach 0.7 solution required a smaller reduction in 
angle of attack to match lift than the Mach 0.8 case since the flow is nearly shock-free at Mach 0.7.  The histories of 
the tip deflection as a function of aeroelastic iteration for both cases are shown in Figures 20-21. Both cases required 
only a few iterations to converge over two orders of magnitude. The computed deflected shapes for both test cases 
are shown in Figures 22-25 as compared to the rigid and FUN3D-computed geometries. What is shown are planar 
slices of the wing outer-mold-line near the elastic axis. The agreement between the Cart3D and FUN3D geometries 
is quite good. Moreover, though the experimental data is not officially available, reference [30] reports that the ex-
perimentally measured tip deflection for the Mach 0.8 case is around 12 mm. This is also in good agreement with 
the Cart3D and Fun3D predicted deflection of 13mm (see Figure 25).

These results suggest that perhaps viscous effects may not need to be modeled in some cases to obtain the cor-
rect wing deformation as long as the total load on the wing is correct. It may be possible to use an Euler-based ae-
roelastic solver to compute the deformed shape of a loaded aircraft wing, and then use a viscous solver to compute 
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Figure 18. HIRENASD test article mounted in the ETW.

CFD Analysis Angle of Attack Lift Coefficient

FUN3D 1.5° 0.2951

Cart3D 1.44° 0.2952

Table I. Computed lift values on the HIRENASD wing at 
Mach 0.7, corresponding to ETW test run 155.

CFD Analysis Angle of Attack Lift Coefficient

FUN3D 1.5° 0.3038

Cart3D 1.31° 0.3043

Table II. Computed lift values on the HIRENASD wing at 
Mach 0.8, corresponding to ETW test run 159.
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the details of the flow more precisely. This process would obviously be much quicker than using the viscous solver 
repeatedly in a framework such as the one shown in Figure 5 since an Euler solver is nominally 1-2 orders of magni-
tude cheaper in terms of computation costs.  Employing a Cartesian-mesh solver is even more attractive since mesh-
ing is automatic whereas most viscous solvers would require some sort of volume mesh deformation scheme.
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Figure 20. Convergence of the aeroelastic analysis for the HIRENASD test article at Mach 0.7.
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article is loaded (a) at three-quarters span, (b) at the tip, (c) midspan and at the tip, and (d) at 3 locations.
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Figure 25. Rigid and deformed wing tip geometries  as 
computed by Cart3D and FUN3D aeroelastic analyses at 
Mach 0.8.

Figure 24. Rigid and deformed wing tip geometries  as 
computed by Cart3D and FUN3D aeroelastic analyses at 
Mach 0.7.

Figure 23. Rigid and deformed geometries as computed by Cart3D and FUN3D aeroelastic analyses at Mach 0.8.

Figure 22. Rigid and deformed geometries as computed by Cart3D and FUN3D aeroelastic analyses at Mach 0.7.
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Figure 21. Convergence of the aeroelastic analysis for the HIRENASD test article at Mach 0.8.

D
ow

nl
oa

de
d 

by
 M

ic
ha

el
 A

fto
sm

is 
on

 Ja
nu

ar
y 

13
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
14

-0
83

6 



B. Generic Transport Model (GTM)

In the late summer of 2013, the University of Wash-
ington Aeronautical Laboratory (UWAL) designed, built, 
and tested a 1:10 scale wind tunnel model of a GTM. 
The model had a semispan of 5.6 feet, not including the 
width of the fuselage surrogate. This model was unique 
because it was built to be very flexible,  producing a 
wing tip deflection of approximately 10% semispan at 
cruise lift conditions. Figure 26 is a snapshot of the test 
article in the wind tunnel. Note that details of this test 
will be published and presented at the AIAA Aviation 
2014 conference.

This wind tunnel test provides a good validation 
case for the aeroelastic analysis method since it involves 
large shape changes and experimentally measured de-
flections are provided. The first step in the analysis 
process was to develop a structural model that represented the test article.  UWAL provided some static load test re-
sults which allowed for a rudimentary structural model to be built. The final structural model was similar to that in 
Figure 6, but with 20 panels. Comparisons of the predictions of the model with the measurements from the UWAL 
static load tests are given in Figure 27. Except for a few spurious points, the agreement is quite good.
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Figure 27. Comparison of deformed wing structure as predicted by the BEAM model and measured in the static load test 
for several  loading conditions: (a) 40 lbs applied inboard, (b) 15  lbs applied near the tip, (c) 17.5 lb-in applied near the 
tip, (d) 35 lb-in applied near the tip.
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(c) (d)

Figure 26. Highly flexible GTM model tested at UWAL.
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The GTM wind tunnel model was analyzed at the 
same conditions as one of the test runs. The tunnel dy-
namic pressure for this case was 20 lbs/ft2 at sea level 
conditions, which resulted in a freestream Mach num-
ber of 0.12. A full sweep of incidence angles was ana-
lyzed using the coupled aeroelastic analysis. To high-
light the effects of the wing deformation, the rigid (un-
deformed) wing was also analyzed. The results of these 
analyses along with the wind tunnel measurements are 
shown in Figure 28. Note the tremendous over-
prediction (roughly 25%) of lift by the rigid wing at 
high angles of attack, while the aeroelastic solution 
matches the measured lift almost exactly.

The wind tunnel data also provides wing deflec-
tions at certain points along the span of the wing. For a 
more detailed validation, one of these test runs was 
selected as an additional test case for the aeroelastic 
analysis tool. The condition selected had a measured, 
corrected angle of attack of 5.38° that corresponds 
closely to the design cruise lift coefficient of 0.51. Once 
converged, the deflected shape of the wing elastic axis 
(based on the structural model) was extracted and com-
pared to the wind tunnel data as shown in Figure 29. 
The agreement is good, which obviously helps explain 
the good agreement in Figure 28. Note that the elastic 
axis of the structural model is not exactly in the same 
chordwise location as that of the measured deflections 
in the wind tunnel test though it is very close (within 5-
10% chord). Also, based on the data shown in Fig-
ure 27, the model is rather stiff torsionally. This means 
very little twist is induced by the aerodynamic loads 
and therefore the difference in chordwise location of the 
measured deflection and the structural model elastic 
axis is less significant.

As was the case for the HIRENASD configuration, 
the convergence of GTM test case was very rapid. The 
history of the tip deflection with respect to the number 
of aeroelastic iterations is shown in Figure 30. Here the 
tip deflection converges over 4 orders of magnitude in a 
handful of aeroelastic iterations.
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Figure 30. Convergence of the aeroelastic analysis for the GTM test article at 5.38° angle of attack.
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Figure 28. Comparison of lift coefficients on the GTM as 
measured in the UWAL test and as computed by Cart3D, 
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Figure 29. Comparison of measured (UWAL wind tunnel 
test) and predicted (Cart3D-based aeroelastic analysis) 
wing deflections at 5.38° angle of attack.
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Unlike the HIRENASD case discussed in the previous subsection, the GTM solutions did not show significant 
viscous effects as indicated by the fact that lift was computed so accurately as a function of angle of attack (see Fig-
ure 28). For this case, it is quite probable that a viscous-solver-based aeroelastic solution would compute very nearly 
the same deformed shape as what was computed with the Euler solver. This is further evidence that perhaps viscous 
effects need not be addressed to get a deformed wing geometry that is very close to reality. Naturally, a great deal 
more research is necessary to verify this hypothesis, but these initial results are encouraging nonetheless.

V. Conclusions
A simple structural model, a Cartesian-mesh Euler solver, and a discrete geometry engine have been loosely 

coupled to spawn an application capable of performing static, aeroelastic analysis on highly flexible aircraft wings. 
The application was designed to be modular to allow for analysis swapping, module testing, and easy problem setup. 
The structural model was verified with Euler beam theory for several loading conditions in both bending and twist. 
The Euler solver with its adjoint-based mesh adaptation capability allowed for good convergence of aeroelastic 
simulations. The procedure has been observed to converge quickly despite its loose coupling, requiring only a few 
iterations to converge the predicted change in the wing shape 2-3 orders of magnitude. The application has also been 
demonstrated to be accurate for the two test cases presented. The first case involved a structurally stiff wind tunnel 
model of a transport wing in transonic flow. By matching lift,  viscous effects were lessened and the small deflections 
in this case were accurately predicted as compared to both published RANS-based aeroelastic solutions and experi-
mental data. This result suggests that perhaps a viscous solver may not be necessary to obtain a very close approxi-
mation to a wing’s aeroelastic shape, even in transonic flow. The second case involved a very flexible wing in nearly 
incompressible flow. For this case,  lift did not need to be matched as Reynolds number effects were not found to be 
significant. The simulated results matched the wind tunnel data very well. Accurately predicting the large deflections 
on a highly flexible wing instills significant confidence in the Cart3D-based aeroelastic analysis tool. Overall, these 
initial results suggest the method is accurate, converges quickly, and is applicable in several flight regimes.

In terms of the computational cost of the analysis method, the aerodynamic analysis component by far requires 
the most computer resources. The tapered-beam solver requires a minuscule amount of computer time as compared 
to the CFD simulation. On the other hand, because a BEAM model is built from the outer mold line of a triangula-
tion by using the Blender API, this step often requires much more time than the actual structural analysis. Fortu-
nately, this preprocessing step is only performed once per wing geometry and requires a only a small fraction of the 
resources needed by the flow solver in an aeroelastic analysis.

VI. Future Work
More work is planned for the Cart3D-based aeroelastic analysis tool presented above to enhance its accuracy 

and applicability. Though unnecessary for the two test cases presented above, the effects of gravity (wing structural 
weight) will be addressed in future versions of the tool. The effects of fuel and engine weights will also be ad-
dressed. Also, the BEAM model can handle moments that are about axes not aligned with the elastic axis. These 
moments can be computed and added to the loads on the wing structure which may be important for some complex 
geometries. Of course, the aeroelastic analysis tool should not be limited to the BEAM structural model. Other struc-
tural analyses should be available such as the simple finite element method used by Nguyen31 or even NASTRAN 
itself. Finally, in the more distant future, a dynamic aeroelastic analysis capability would be desirable for flutter and 
buffet-onset prediction. Such a tool would likely implement the time-tested techniques used by Guruswamy32 and 
Farhat.33

As these features are added to the solver, additional validation exercises will be performed to confirm the accu-
racy of the method. Unfortunately, aeroelastic validation test cases are quite rare, especially those that are accompa-
nied by experimental data. Of course, validating the method using solutions from other already-validated aeroelastic 
solvers would augment confidence in the methodology. Another interesting exercise would be to analyze the final 
geometry from a converged Cart3D-based aeroelastic solution with a viscous code such as FUN3D. Loads could 
then be extracted from the viscous solution and applied to the structural model to estimate how different a viscous 
aeroelastic solution would be from the inviscid one. Should the results of this exercise indicate that the inviscid solu-
tion is sufficient to obtain the shape, then the process of obtaining a viscous solution on a loaded flexible wing could 
be made much more efficient by first using the faster Cart3D-based tool first.

Looking at the bigger picture, the aeroelastic analysis procedure provides the opportunity for aeroelastic design 
optimization of typical transport and even truss-braced wings. The adjoint-driven, design capability of Cart3D pro-
vides a scheme for quickly computing aerodynamic performance sensitivities to geometric shape changes. The 
BEAM model was also selected to provide the capability to optimize the structural design itself. Working in tandem, 
the two analyses should properly represent the tradeoffs that exist in the design space of an aircraft wing, particu-
larly for the very flexible designs of the future. Ultimately this method was created not just as a stand-alone analysis 
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but more so to be exploited within a design optimization framework. While the exact architecture of such a frame-
work has not been established, the development of the framework is currently planned for the near future.
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